Площадь поверхностного натяжения. Поверхностное натяжение. Чтение текста с пометками

Понятие поверхностного натяжения

Поверхностным натяжением называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы плошали этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз.

Нефть - это нефтяная дисперсная система, состоящая из дисперсной фазы и дисперсионной среды.

Поверхность частицы дисперсной фазы (например, ассоциат асфальтенов, глобула воды и т. п.) обладает некоторым избытком свободной поверхностной энергии F s , пропорциональной площади поверхности раздела фаз S :

Величина σ может рассматриваться не только как удельная поверхностная энергия, но и как сила, приложенная к единице длины контура, ограничивающего поверхность, направленная вдоль этой поверхности перпендикулярно контуру и стремящаяся эту поверхность стянуть или уменьшить. Эта сила носит название поверхностного натяжения .

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру.

Длина каждой стрелочки вектора отражает величину поверхностного натяжения, а расстояние между ними соответствует принятой единице длины контура поверхности. В качестве размерности величины σ в равной мере используются как [Дж/м 2 ] = 10 3 [эрг/см 2 ], так и [Н/м] = 10 3 [дин/см].

В результате действия сил поверхностного натяжения жидкость стремится сократить свою поверхность, и если влияние силы земного притяжения незначительно, жидкость принимает форму шара, имеющего минимальную поверхность на единицу объема.

Поверхностное натяжение различно для разных групп углеводородов - максимально для ароматических и минимально для парафиновых. С увеличением молекулярной массы углеводородов оно повышается.

Большинство гетероатомных соединений, обладая полярными свойствами, имеют поверхностное натяжение ниже, чем углеводороды. Это очень важно, поскольку их наличие играет значительную роль в образовании водонефтяных и газонефтяных эмульсий и в последующих процессах разрушения этих эмульсий.

Параметры влияющие на поверхностное натяжение

Поверхностное натяжение существенно зависит от температуры и давления, а также от химического состава жидкости и соприкасающейся с ней фазы (газ или вода).

С повышением температуры поверхностное натяжение убывает и при критической температуре равно нулю. С увеличением давления поверхностное натяжение в системе газ - жидкость также снижается.

Поверхностное натяжение нефтепродуктов может быть найдено расчетным путем по уравнению:

Пересчет σ от одной температуры T 0 к другой T можно проводить по соотношению:

Значения поверхностного натяжения для некоторых веществ.

Вещества, добавка которых к жидкости уменьшает ее поверхностное натяжение, называют поверхностно-активными веществами (ПАВ).

Поверхностное натяжение нефти и нефтепродуктов зависит от количества присутствующих в них поверхностно-активных компонентов (смолистых веществ, нафтеновых и других органических кислот и т. п.).

Нефтепродукты с малым содержанием поверхностно-активных компонентов имеют наибольшее значение поверхностного натяжения на границе с водой, с большим содержанием - наименьшее.

Хорошо очищенные нефтепродукты имеют высокое поверхностное натяжение на границе с водой.

Понижение поверхностного натяжения объясняется адсорбцией ПАВ на границе раздела фаз. С увеличением концентрации добавляемого ПАВ поверхностное натяжение жидкости сначала интенсивно снижается, а затем стабилизируется, что свидетельствует о полном насыщении поверхностного слоя молекулами ПАВ. Природными поверхностно-активными веществами, резко изменяющими поверхностное натяжение нефтей и нефтепродуктов, являются спирты, фенолы, смолы, асфальтены, различные органические кислоты.

С поверхностными силами на границе раздела твердой и жидкой фаз связаны явления смачивания и капиллярные явления, на которых основаны процессы миграции нефти в пластах, подъем керосина и масла по фитилям ламп и масленок и т. д.

Экспериментальное определение поверхностного натяжения

Для экспериментального определения поверхностного натяжения нефтей и нефтепродуктов применяются различные методы.

Первый метод (а) основан на измерении силы, необходимой для отрыва кольца от поверхности раздела двух фаз. Эта сила пропорциональна удвоенной силе окружности кольца. При капиллярном методе (б) измеряют высоту подъема жидкости в капиллярной трубке. Недостатком его является зависимость высоты подъема жидкости не только от величины поверхностного натяжения, но и от характера смачивания стенок капилляра исследуемой жидкостью. Более точной разновидностью капиллярного метода является метод висячей капли (в), основанный на измерении массы капли жидкости, отрывающейся от капилляра. На результаты измерения влияют плотность жидкости и размеры капли и не влияет угол смачивания жидкостью твердой поверхности. Этот метод позволяет определять поверхностное натяжение в сосудах высокого давления.

Наиболее распространенным и удобным способом измерения поверхностного натяжения является способ наибольшего давления пузырьков или капель (г), что объясняется простотой конструкции, высокой точностью и независимостью определения от смачивания.

Этот способ основан на том, что при выдавливании пузырька воздуха или капли жидкости из узкого капилляра в другую жидкость поверхностное натяжение σ на границе с той жидкостью, в которую выпускается капля, пропорционально наибольшему давлению, необходимому для выдавливания капли.

Поверхностное натяжение воды – одно из самых интересных свойств воды.

Приведем несколько определений этого термина из компетентных источников.

Поверхностное натяжение, это …

Большая медицинская энциклопедия

Поверхностное натяжение (П. н.) — это сила притяжения, с которой каждый участок поверхностной пленки (свободной поверхности жидкости или же любой поверхности раздела двух фаз) действует на смежные части поверхности. Внутреннее давление и П. н. Поверхностный слой жидкости ведет себя, как эластическая растянутая мембрана. Согласно представлению, развитому гл. обр. Лапласом (Laplace), это свойство жидких поверхностей зависит от «молекулярных сил притяжения, быстро убывающих с расстоянием. Внутри однородной жидкости силы, действующие на каждую молекулу со стороны молекул, ее окружающих, взаимно уравновешиваются. Но вблизи поверхности равнодействующая сил молекулярного притяжения направлена внутрь; она стремится втянуть поверхностные молекулы в толщу жидкости. Вследствие этого весь поверхностный слой подобно упругой растянутой пленке оказывает на внутреннюю массу жидкости в направлении, нормальном к поверхности, весьма значительное давление. По подсчетам это «внутреннее давление», под которым находится вся масса жидкости, достигает нескольких тысяч атмосфер. Оно возрастает на выпуклой поверхности и убывает на вогнутой. В силу стремления свободной энергии к минимуму всякая жидкость стремится принять форму, при к-рой ее поверхность - место действия поверхностных сил - имеет наименьшую возможную величину. Чем больше поверхность жидкости, тем большую площадь занимает ее поверхностная пленка, тем значительнее запас свободной поверхностной энергии, освобождающейся при ее сокращении. Натяжение, с которым каждый участок сокращающейся поверхностной пленки действует на смежные части (в направлении, параллельном свободной поверхности), называется П. н. В отличие от эластического напряжения упругого растянутого тела, П. н. не ослабевает по мере сжатия поверхностной пленки. … Поверхностное натяжение равняется работе, которую нужно совершить, чтобы увеличить свободную поверхность жидкости на единицу. П. н. наблюдается на границе жидкости с газом (также и с собственным паром), с другой несмешивающейся жидкостью или же с твердым телом. Точно так же и твердое тело имеет П. н. на границе с газами и жидкостями. В отличие от П. н., к-рое жидкость (или твердое тело) имеет на своей свободной поверхности, граничащей с газообразной средой, натяжение на внутренней границе двух жидких (или жидкой и твердой) фаз удобно обозначить специальным термином-принятым в немецкой литературе, термином «пограничное натяжение» (Grenzflachenspannung). Если в жидкости растворено вещество, понижающее ее П. н., то свободная энергия уменьшается не только путём уменьшения величины пограничной поверхности, но и посредством адсорпции: поверхностно активное (или капилярноактивное) вещество собирается в повышенной концентрации в поверхностном слое …

Большая медицинская энциклопедия. 1970

Подытожить все вышесказанное можно таким образом – молекулы, которые находятся на поверхности какой либо жидкости, в том числе и воды, притягиваются остальными молекулами внутрь жидкости, вследствие чего и возникает поверхностное натяжение. Подчеркнем, что это упрощенное понимание этого свойства.

Поверхностное натяжение воды

Для лучшего понимания этого свойства приведем несколько проявлений поверхностного натяжения воды в реальной жизни:

  • Когда мы видим как вода с кончика крана капает а не льётся — это поверхностное натяжение воды;
  • Когда капля дождя в полете принимает округлую слегка вытянутую форму — это поверхностное натяжение воды;
  • Когда вода на водонепроницаемой поверхности принимает шарообразную форму — это поверхностное натяжение воды;
  • Рябь, возникающая при дуновении ветра на поверхности водоемов, так же является проявлением поверхностного натяжения воды;
  • Вода в космосе принимает шарообразную форму благодаря поверхностному натяжению;
  • Насекомое водомерка держится на поверхности воды благодаря именно этому свойству воды;
  • Если на поверхность воды аккуратно положить иглу, она будет плавать;
  • Если в стакан поочерёдно налить жидкости разной плотности и цвета, мы увидим, что они не смешиваются;
  • Радужные мыльные пузыри, так же являются прекрасным проявление поверхностного натяжения.

Коэффициент поверхностного натяжения

Политехнический терминологический толковый словарь

Коэффициент поверхностного натяжения — линейная плотность силы поверхностного натяжения на поверхности жидкости или на границе раздела двух несмешивающихся жидкостей.

Политехнический терминологический толковый словарь. Составление: В. Бутаков, И. Фаградянц. 2014

Ниже мы приведем значения коэффициента поверхностного натяжения (К. п. н.) для различных жидкостей при температуре 20°C:

  • К. п. н. ацетона — 0.0233 Ньютон / Метр;
  • К. п. н. бензола — 0.0289 Ньютон / Метр;
  • К. п. н. воды дистиллированной — 0.0727 Ньютон / Метр;
  • К. п. н. глицерина — 0.0657 Ньютон / Метр;
  • К. п. н. керосина — 0.0289 Ньютон / Метр;
  • К. п. н. ртути — 0.4650 Ньютон / Метр;
  • К. п. н. этилового спирта — 0.0223 Ньютон / Метр;
  • К. п. н. эфира — 0.0171 Ньютон / Метр.

Коэффициент поверхностного натяжения воды

Коэффициент поверхностного натяжения зависит от температуры жидкости. Приведем его значения при различных температурах воды.

  • При температуре 0°C — 75,64 σ, 10 –3 Ньютон / Метр;
  • При температуре 10°C — 74,22 σ, 10 –3 Ньютон / Метр;
  • При температуре 20°C — 72,25 σ, 10 –3 Ньютон / Метр;
  • При температуре 30°C — 71,18 σ, 10 –3 Ньютон / Метр;
  • При температуре 40°C — 69,56 σ, 10 –3 Ньютон / Метр;
  • При температуре 50°C — 67,91 σ, 10 –3 Ньютон / Метр;
  • При температуре 60°C — 66,18 σ, 10 –3 Ньютон / Метр;
  • При температуре 70°C — 64,42 σ, 10 –3 Ньютон / Метр;
  • При температуре 80°C — 62,61 σ, 10 –3 Ньютон / Метр;
  • При температуре 90°C — 60,75 σ, 10 –3 Ньютон / Метр;
  • При температуре 100°C — 58,85 σ, 10 –3 Ньютон / Метр.

Кап, кап... Вот очередная капля собралась на носике крана, набухла и сорвалась вниз. Подобная картина знакома любому. Или теплый летний дождик поливает истосковавшуюся по влаге землю - и опять капли. А почему именно капли? В чем здесь причина? Все очень просто: причиной этого является поверхностное натяжение воды.

Это одно из свойств воды или, если говорить в общем, всех жидкостей. Как известно, газ заполняет весь объём, в который попадает, а вот жидкость этого сделать не может. Молекулы, находящиеся внутри объема воды, окружены такими же молекулами со всех сторон. А вот находящиеся на поверхности, на границе жидкости и газа, испытывают воздействие не со всех сторон, а только со стороны тех молекул, которые расположены внутри объема, со стороны газа на них воздействия нет.

При этом на поверхности жидкости будет действовать сила, направленная вдоль нее перпендикулярно к тому участку поверхности, на который она действует. В результате действия этой силы и возникает поверхностное натяжение воды. Внешним его проявлением будет образование подобия невидимой, упругой пленки на границе раздела. Вследствие воздействия поверхностного натяжения капля воды примет форму сферы как тела, имеющего наименьшую площадь при заданном объеме.

Теперь можно определить, что поверхностное натяжение - это работа по изменению поверхности жидкости. С другой стороны его можно определить как энергию, необходимую для разрыва единицы поверхности. Поверхностное натяжение возможно на границе жидкости и газа. Оно определяется силой, действующей между молекулами, и значит, ответственной за летучесть (испаряемость). Чем меньше величина поверхностного натяжения, тем более летучей будет жидкость.

Можно определить, чему равно Формула для его вычисления включает в себя площадь поверхности и Как уже упоминалось раньше, коэффициент не зависит от формы и величины поверхности, а определяется силой межмолекулярного взаимодействия, т.е. типом жидкости. Для разных жидкостей его величина будет различной.

Поверхностное натяжение воды можно менять. Это достигается нагреванием, добавлением биологически активных веществ - таких, как мыло, порошок, паста. Его величина зависит от степени чистоты воды. Чем чище вода, тем величина поверхностного натяжения больше, и она по своему значению уступает только ртути.

Любопытный эффект наблюдается, когда жидкость соприкасается и с твердым веществом, и с газом. Если мы нанесем каплю воды на поверхность парафина, то она примет форму шарика. Это вызвано тем, что силы, действующие между парафином и каплей, меньше, чем взаимодействие между собой в результате чего и появляется шарик. Когда силы, действующие между поверхностью и каплей, будут больше, чем силы межмолекулярного взаимодействия, то вода равномерно растечется по поверхности. Это явление называется смачиванием.

Эффект смачиваемости в какой-то степени может характеризовать степень чистоты поверхности. На чистой поверхности капля растекается равномерно, а если поверхность загрязнена или покрыта веществом, не смачиваемым водой, то последняя собирается в шарики.

Как пример использования поверхностного натяжения в промышленности можно привести отливку сферических деталей, например, дроби для ружей. Капли расплавленного металла просто застывают на лету, принимая шарообразную форму.

Поверхностное натяжение воды, как и любой другой жидкости, является одним из важных ее параметров. Оно определяет некоторые характеристики жидкости - такие, как летучесть (испаряемость) и смачиваемость. Его значение зависит только от параметров межмолекулярного взаимодействия.

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.

Основная часть.

Для понимания основных свойств и закономерностей жидкого состояния вещества необходимо рассмотреть следующие аспекты:

Строение жидкости. Движение молекул жидкости .

Жидкость – это нечто такое, что может течь.

В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным.

Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным, и довольно быстро порядок в расположении частиц совсем исчезает.

Молекулы жидкости движутся гораздо более свободно, чем молекулы твердого тела, хотя и не так свободно, как молекулы газа.

Каждая молекула жидкости в течение некоторого времени движется то туда, то сюда, не удаляясь, однако от своих соседей. Но время от времени молекула жидкости вырывается из своего окружения и переходит в другое место, попадая в новое окружение, где опять в течение некоторого времени совершает движения, подобные колебанию. Значительные заслуги в разработке ряда проблем теории жидкого состояния принадлежит советскому ученому Я. И. Френкелю.

Cогласно Френкелю, тепловое движение в жидкостях имеет следующий характер. Каждая молекула в течение некоторого времени колеблется около определенного положения равновесия. Время от времени молекула меняет место равновесия, скачком перемещаясь на новое положение, отстоящего от предыдущего на расстояние порядка размеров самих молекул. То есть, молекулы лишь медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест.Таким образом, движение молекул жидкости представляет собой нечто вроде смеси движений в твердом теле и в газе: колебательное движение на одном месте сменяется свободным переходом из одного места в другое.

Давление в жидкости

Повседневный опыт учит нас, что жидкости действуют с известными силами на поверхность твердых тел, соприкасающихся с ними. Эти силы называются силами давления жидкости.



Прикрывая пальцем отверстие открытого водопроводного крана, мы ощущаем силу давления жидкости на палец. Боль в ушах, которую испытывает пловец, нырнувший на большую глубину, вызвана силами давления воды на барабанную перепонку уха. Термометры для измерения температуры на глубине моря должны быть очень прочными, чтобы давление воды не могло раздавить их.

Давление в жидкости обусловлено изменением ее объема – сжатием. По отношению к изменению объема жидкости обладают упругостью. Силы упругости в жидкости – это и есть силы давления. Таким образом, если жидкость действует с силами давления на соприкасающиеся с ней тела, это значит, что она сжата. Так как при сжатии плотность вещества растет то можно сказать, что жидкости обладают упругостью по отношению к изменению плотности.

Давление в жидкости перпендикулярно любой поверхности, помещенной в жидкость. Давление в жидкости на глубине h равно сумме давления на поверхности и величины, пропорциональной глубине:

Благодаря тому, что жидкости могут передавать статическое давление, практически не менее своей плотности они могут использоваться в устройствах, дающих выигрыш в силе: гидравлическом прессе.

Закон Архимеда

На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть жидкости и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Равнодействующая сил давления на тело, погруженное в жидкость, называется поддерживающей силой жидкости.

Если тело, погруженное в жидкость, предоставить самому себе, то оно потонет, останется в равновесии или всплывет на поверхность жидкости в зависимости от того, меньше ли поддерживающая сила, чем сила тяжести, действующая на тело, равна ей или больше ее.

Закон Архимеда заключается в том, что на тело, находящееся в жидкости, действует направленная вверх выталкивающая сила, равная весу вытесненной жидкости. На тело, погружённое в жидкость, действует выталкивающая сила (называемая силой Архимеда)

где ρ - плотность жидкости (газа), - ускорение свободного падения, а V - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности).

Если тело, погруженное в жидкость, подвешено к чаше весов, то весы показывают разность между весом тела в воздухе и весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Интересно отметить такой экспериментальный факт, что, находясь внутри другой жидкости большего удельного веса, жидкость по закону Архимеда «теряет» свой вес и принимает свою естественную, шарообразную форму.

Испарение

В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры.

Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией.

Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным.

С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей должна быть плотность пара, чтобы конденсация могла сравняться с испарением.

Кипение

Когда при нагревании жидкости достигается температура, при которой давление насыщенных паров равно внешнему давлению, устанавливается равновесие между жидкостью и ее насыщенным паром. При сообщении жидкости дополнительного количества теплоты происходит немедленное превращение соответствующей массы жидкости в пар. Этот процесс называется кипением.

Кипение – это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Например, для испарения 1 г воды при температуре 100° С и давлении, соответствующем атмосферному давлению на уровне моря, требуется затратить 2258 Дж, из которых 1880 идут на отделение молекул от жидкости, а остальные – на работу по увеличению объема, занимаемого системой, против сил атмосферного давления (1 г водяных паров при 100° С и нормальном давлении занимает объем 1,673 см 3 , тогда как 1 г воды при тех же условиях – лишь 1,04 см 3).

Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается.

По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения.

Температуры кипения различных жидкостей сильно отличаются, между собой и это находит широкое применение в технике, например, при разгонке нефтепродуктов.

Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.

Поверхностное натяжение жидкости

Свойство жидкости сокращать свою поверхность до минимума называется поверхностным натяжением. Поверхностное натяжение – явление молекулярного давления на жидкость, вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости. На поверхности жидкости молекулы испытывают действие сил, которые не являются симметричными. На находящуюся внутри жидкости молекулу со стороны соседей в среднем равномерно со всех сторон действует сила притяжения, сцепления. Если поверхность жидкости увеличивать, то молекулы будут двигаться против действия удерживающих сил. Таким образом, сила, стремящаяся сократить поверхность жидкости, действует в противоположном направлении внешней растягивающей поверхность силе. Эта сила называется силой поверхностного натяжения и вычисляется по формуле:

Коэффициент поверхностного натяжения()

Длина границы поверхности жидкости

Обратим внимание, что у легко испаряющихся жидкостей (эфира, спирта) поверхностное натяжение меньше, чем у жидкостей нелетучих (у ртути). Очень мало поверхностное натяжение у жидкого водорода и, особенно, у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико. Различие в поверхностном натяжении жидкостей объясняется различием в силах сцепления у разных молекул.

Измерения поверхностного натяжения жидкости показывают, что поверхностное натяжение зависит не только от природы жидкости, но и от его температуры: с повышением температуры различие в плотностях жидкости уменьшаются, в связи с этим уменьшается и коэффициент поверхностного натяжения - .

Благодаря поверхностному натяжению любой объем жидкости стремится уменьшить площадь поверхности, уменьшая таким образом и потенциальную энергию. Поверхностное натяжение – одна из упругих сил, ответственных за движение ряби на воде. В выпуклостях поверхностное тяготение и поверхностное натяжение тянут частицы воды вниз, стремясь сделать поверхность снова гладкой.

Жидкостные пленки

Все знают, как легко получить пену из мыльной воды. Пена – это множества пузырьков воздуха, ограниченных тончайшей пленкой из жидкости. Из жидкости, образующей пену, легко можно получить и отдельную пленку.

Эти пленки очень интересны. Они могут быть чрезвычайно тонки: в наиболее тонких частях их толщина не превосходит стотысячной доли миллиметра. Несмотря на свою тонкость, они иногда очень устойчивы. Мыльную пленку можно растягивать и деформировать, сквозь мыльную пленку может протекать струя воды, не разрушая ее.

Чем же объяснить устойчивость пленок? Непременным условием образования пленки является прибавление к чистой жидкости растворяющихся в ней веществ, притом таких, которые сильно понижают поверхностное натяжение

В природе и технике мы обычно встречаемся не с отдельными пленками, а с собранием пленок – пеной. Часто можно видеть в ручьях, там, где небольшие струйки падают в спокойную воду, обильное образование пены. В этом случае способность воды пениться связана с наличием в воде особого органического вещества, выделяющегося из корней растений. В строительной технике используют материалы, имеющие ячеистую структуру, вроде пены. Такие материалы дешевы, легки, плохо проводят теплоту и звуки и достаточно прочны. Для их изготовления добавляют в растворы, из которых образуются стройматериалы, вещества, способствующие пенообразованию.

Смачивание

Небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости. Ртуть, помещенная на поверхность твердого тела, не всегда образует круглые капли. Она растекается по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится.

Капля анилина имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда. Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность.

Это объясняется тем, что в случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекулы жидкости с молекулой твердого тела. В случае ртути и стекла силы сцепления между молекулами ртути и стекла малы по сравнению с силами сцепления между молекулами ртути, и ртуть собирается в каплю.

Такая жидкость называется не смачивающей твердое тело. В случае же ртути и цинка силы сцепления между молекулами жидкости и твердого тела превосходят силы сцепления, действующие между молекулами жидкости, и жидкость растекается по твердому телу. В этом случае жидкость называется смачивающей твердое тело.

Отсюда следует, что, говоря о поверхности жидкости, надо иметь в виду не только поверхность, где жидкость граничит с воздухом, но также и поверхность, граничащую с другими жидкостями и ли с твердым телом.

В зависимости от того, смачивает ли жидкость стенки сосуда или не смачивает, форма поверхности жидкости у места соприкосновения с твердой стенкой и газом имеет тот или иной вид. В случае несмачивания форма поверхности жидкости у края круглая, выпуклая. В случае смачивания жидкость у края принимает вогнутую форму.

Капиллярные явления

В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. д. Подобные явления можно также наблюдать в узких стеклянных трубочках. Узкие трубочки называются капиллярными или волосными.

При погружении такой трубочки одним концом в широкий сосуд в широкий сосуд происходит следующее: если жидкость смачивает стенки трубки, то она поднимется над уровнем жидкости в сосуде и притом тем выше, чем уже трубка; если жидкость не смачивает стенки, то наоборот уровень жидкости в трубке устанавливается ниже, чем в широком сосуде. Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности. В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения.

Высота поднятия жидкости в капиллярных трубках зависит от радиуса канала в трубке, поверхностного натяжения и плотности жидкости. Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней h, чтобы гидростатическое давление rgh уравновешивало капиллярное давление:

где s - поверхностное натяжение жидкости

R – радиус капилляра.

Высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости (закон Жюрена)