Сложение сил в физике определение. Сложение сил. Основные меры движения системы материальных точек

При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые бы возникли под действием каждой силы в отдельности. Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов.

Векторная сумма всех сил, одновременно действующих на тело, называется равнодействующей силой .

Прямая, проходящая через вектор силы, называется линией действия силы. Если силы приложены к разным точкам тела и действуют не параллельно друг другу, то равнодействующая приложена к точке пересечения линий действия сил. Если силы действуют параллельно друг другу, то точки приложения результирующей силы нет, а линия ее действия определяется формулой: (см. рисунок).

Момент силы. Условие равновесия рычага

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, находится в состоянии равновесия.

Существует два вида механического движения – поступательное движение и вращение .

Если траектории движения всех точек тела одинаковы, то движение поступательное . Если траектории всех точек тела – дуги концентрических окружностей (окружностей с одним центром – точкой вращения), то движение вращательное.

Равновесие невращающихся тел : невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тела, имеющего неподвижную ось вращения

Если линия действия силы, приложенной к телу, проходит через ось вращения тела, то эта сила уравновешивается силой упругости со стороны оси вращения.

Если линия действия силы не пересекает ось вращения, то эта сила не может быть уравновешена силой упругости со стороны оси вращения, и тело поворачивается вокруг оси.

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы. Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тело находится в равновесии, если выполняется условие:

, где d 1 иd 2 – кратчайшие расстояния от линий действия силF 1 иF 2. Расстояниеdназываетсяплечом силы , а произведение модуля силы на плечо –моментом силы :

.

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, – отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии 1 м от оси вращения. Эту единицу называют ньютон-метром .

Общее условие равновесия тела :тело находится в равновесии, если равны нулю геометрическая сумма всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения .

При выполнении этого условия тело необязательно находится в покое. Оно может двигаться равномерно и прямолинейно или вращаться.

Как правило, движение точечного тела с ускорением в ИСО происходит при действии нескольких тел. Например, пусть тележка движется с ускорением по реальной горизонтальной дороге. На нее оказывает действие человек, который толкает тележку, и дорога, которая тормозит движение тележки. Изучая движение тела при действии на него нескольких тел, Ньютон пришел к двум выводам:

1. Действия, которые оказывают на точечное тело другие тела, не зависят друг от друга.
2. Силы, характеризующие эти действия, можно складывать.

Сформулируем правила сложения сил, действующих на точечное тело вдоль одной прямой.

1. Если на точечное тело действуют две силы F 1 и F 2 , направленные в одну сторону (рис. 73), то их действие равно действию одной силы F. При этом:

2. Если на точечное тело действуют две силы F 1 и F 2 , направленные в противоположные стороны (рис. 74, а, б), то их действие равно действию силы F, которая:

Если на точечное тело действуют три силы (или больше), то вначале нужно сложить две из них. Потом к полученной в результате силе прибавить третью силу и т. д.

Из правила 2 можно сделать очень важный вывод: если на точечное тело действуют только две равные по модулю, но противоположно направленные силы, то общее действие этих сил равно нулю (рис. 75). В этом случае говорят, что силы F 1 и F 2 компенсируют (уравновешивают) друг друга. Понятно, что тогда ускорение этого тела в инерциальной системе отсчета будет равно нулю и его скорость будет постоянной. Это значит, что тело будет покоиться в данной ИСО или двигаться равномерно прямолинейно.

Верно и обратное утверждение:
если тело в инерциальной системе отсчета движется равномерно прямолинейно или покоится, то либо на тело не действуют никакие другие тела, либо сумма действующих на тело сил равна нулю.

Отметим, что в этом случае экспериментально невозможно определить, какое из этих двух условий выполняется: равна ли нулю сумма всех действующих на точечное тело сил, или на него вообще ничто не действует.

Точно так же экспериментально невозможно различить, действуют ли на точечное тело одна сила F, или на это тело действуют несколько сил, сумма которых равна F.

Используем правила сложения сил для выработки рецепта измерения силы.

Прежде всего введем эталон силы. Для этого выберем конкретную пружину. Растянем ее на определенную величину и прикрепим к телу. Будем считать, что в этом случае на тело со стороны пружины действует сила, модуль которой равен единице (рис. 76). В результате тело приобретет ускорение в ИСО.

Чтобы этого не произошло, присоединим к этому телу вторую пружину с противоположной стороны, как показано на рис. 77. При этом вторую пружину растянем таким образом, чтобы ее действие уравновесило (скомпенсировало) действие первой (эталонной) пружины. Тогда тело, на которое одновременно действуют обе пружины, будет оставаться в покое. Следовательно, модуль силы, с которой действует на тело вторая пружина, будет в точности равен модулю силы единичной величины. Зафиксируем растяжение второй пружины. растянутая до такой длины, она тоже станет эталоном силы. Таким образом, можно получить сколько угодно эталонов силы.

Создадим силу, модуль которой равен, например, половине единицы силы. Для этого уравновесим действие на тело эталонной пружины двумя одинаковыми пружинами, растянутыми на одну и ту же длину (рис. 78). При этом модуль силы, с которой действует на тело любая из двух одинаковых пружин, будет равен модулю половины единицы силы.

Аналогичным образом можно создать силу, модуль которой в заданное число раз (например, в 3, 10 и т. д.) меньше модуля единицы силы.

Так мы можем создать набор пружин, которые при известных растяжениях действуют с разными силами. Теперь для нас не составит труда измерить модуль любой неизвестной силы. Для этого будет достаточно уравновесить ее действие действием соответствующего набора пружин. Пример такого измерения показан на рис. 79. Измеренная таким способом сила, во-первых, равна по модулю сумме модулей сил, создаваемых набором пружин, и, во-вторых, направлена в сторону, противоположную направлению их действия.

Итоги

Правила сложения сил, действующих на тело вдоль одной прямой.

1. Если на точечное тело действуют две силы F 1 и F 2 , направленные в одну сторону, то их действие равно действию одной силы F. При этом:
– сила F направлена в ту же сторону, что и силы F 1 и F 2 ;
– модуль силы F равен сумме модулей сил F 1 и F 2 .

2. Если на точечное тело действуют две силы F 1 и F 2 , направленные в противоположные стороны, то их действие равно действию силы F, которая:
– направлена в сторону большей по модулю силы;
– имеет модуль, равный разности модулей большей и меньшей сил.

Если сумма всех сил, действующих на точечное тело, равна нулю, то говорят, что эти силы уравновешивают (компенсируют) друг друга. В этом случае тело в ИСО движется равномерно прямолинейно или покоится, т. е. не изменяет своего механического состояния.

Для измерения неизвестной силы ее действие надо уравновесить (скомпенсировать) действием набора эталонных пружин.

Вопросы

  1. Сформулируйте правила сложения сил, действующих вдоль одной прямой.
  2. В каком случае говорят, что силы уравновешивают друг друга?

Упражнения

1. Определите, чему равна и куда направлена сумма двух действующих на точечное тело сил, если первая сила направлена в положительном направлении оси X, а вторая – в противоположном направлении. Модули сил, измеренные в эталонных единицах, равны: |F 1 | = 3, |F 2 | = 5.

2. Определите, чему равна и куда направлена сумма трех действующих на точечное тело сил, если первая сила направлена в положительном направлении оси X, а вторая и третья – в противоположном направлении. Модули сил, измеренные в эталонных единицах, равны: |F 1 | = 30, |F 2 | =5, |F 3 | = 15.

3. Найдите, чему равна и куда направлена сила F, действующая на точечное тело, если сумма трех действующих на это тело сил F, F 1 и F 2 равна нулю. При этом F 1 направлена в положительном направлении оси Х, а F 2 – в противоположном направлении. Модули сил, измеренные в эталонных единицах, равны: |F 1 | = 30, |F 2 | = 5.

4. Лежащий на дороге камень (рис. 80) неподвижен в системе отсчета, связанной с Землей. Ответьте на вопросы:
а) чему равна сумма сил, действующих на камень?
б) изменяется ли со временем скорость (равно ли нулю ускорение) камня в системе отсчета, связанной:
– с прямолинейно равномерно едущим по дороге автобусом;
– с ускоряющимся относительно дороги автомобилем;
– с шишкой, которая свободно падает с дерева с ускорением g?
в) какие из этих систем отсчета являются инерциальными, а какие – неинерциальными?

Сила. Сложение сил

Любые изменения в природе происходят в результате взаимодействия между телами. Мяч лежит на земле, не начнет двигаться, если не толкнуть ногой, пружина не будет растягиваться, если к ней прикрепить грузик т.д.. При взаимодействии тела с другими телами скорость его движения изменяется. В физике часто не указывают, какое тело и как действует на данное тело, а говорят, что «на тело действует сила».

Сила - это физическая величина, которая количественно характеризует действие одного тела на другое, в результате которой тело изменяет свою скорость. Сила является векторной величиной. То есть, кроме числового значения, сила направление. Сила обозначается буквой F и в Системе Интернациональной измеряется в ньютонах. 1 ньютон - это сила, которая телу массой 1 кг, находящегося в состоянии покоя, предоставляет за 1 секунду скорость 1 метр в секунду при отсутствии трения. Измерить силу можно с помощью специального устройства - динамометра.

В зависимости от характера взаимодействия в механике различают три вида сил:

  • силу тяжести,
  • силу упругости,
  • силу трения.

Как правило, на тело действует не одна, а несколько сил. В таком случае рассматривают равнодействующую сил. Равнодействующей сил называют такую силу, которая действует так же, как несколько сил, одновременно действующих на тело. Пользуясь результатами опытов, можно сделать вывод: равнодействующая сил, направленных вдоль одной прямой в одну сторону, направлена в ту же сторону, а ее значение равно сумме значений этих сил. Равнодействующая двух сил, направленных вдоль одной прямой в противоположные стороны, направлена в сторону большей силы и равна разности значений этих сил.

При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся вектор ной суммой ускорений, которые бы возникли под действием каждой силы в отдельности. Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов.

Векторная сумма всех сил, одновременно действующих на тело, называется равнодействующей силой и определяется правилом векторного сложения сил: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2+{\overrightarrow{F}}_3+\dots +{\overrightarrow{F}}_n=\sum^n_{i=1}{{\overrightarrow{F}}_i}$.

Равнодействующая сила оказывает на тело такое же действие, как сумма всех приложенных к нему сил.

Для сложения двух сил используется правило параллелограмма (рис.1):

Рисунок 1. Сложение двух сил по правилу параллелограмма

При этом модуль суммы двух сил находим по теореме косинусов:

\[\left|\overrightarrow{R}\right|=\sqrt{{\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2{\left|{\overrightarrow{F}}_1\right|}^2{\left|{\overrightarrow{F}}_2\right|}^2{cos \alpha \ }}\]

Если нужно сложить более двух сил, приложенных в одной точке, то пользуются правилом многоугольника:~ из конца первой силы проводят вектор, равный и параллельный второй силе; из конца второй силы -- вектор, равный и параллельный третьей силе и так далее.

Рисунок 2. Сложение сил по правилу многоугольника

Замыкающий вектор, проведённый из точки приложения сил к концу последней силы, по величине и направлению равен равнодействующей. На рис.2 это правило проиллюстрировано на примере нахождения равнодействующей~~четырёх сил ${\overrightarrow{F}}_1,\ {\overrightarrow{F}}_2,{\overrightarrow{F}}_3,{\overrightarrow{F}}_4$. Заметим, что при этом складываемые векторы не обязательно должны принадлежать одной плоскости.

Результат действия силы на материальную точку зависит только от ее модуля и направления. Твердое же тело имеет определенные размеры. Поэтому одинаковые по модулю и направлению силы вызывают различные движения твердого тела в зависимости от точки приложения. Прямая, проходящая через вектор силы, называется линией действия силы.

Рисунок 3. Сложение сил, приложенных к разным точкам тела

Если силы приложены к разным точкам тела и действуют не параллельно друг другу, то равнодействующая приложена к точке пересечения линий действия сил (рис.3).

Точка находится в равновесии, если векторная сумма всех сил, действующих на нее, равна нулю: $\sum^n_{i=1}{{\overrightarrow{F}}_i}=\overrightarrow{0}$. В этом случае равна нулю и сумма проекций этих сил на любую ось координат.

Замену одной силы двумя, приложенными в той же точке и производящими на тело такое же действие, как и эта одна сила, называют разложением сил. Разложение сил производят, как и их сложение, по правилу параллелограмма.

Задача разложения одной силы (модуль и направление которой известны) на две, приложенные в одной точке и действующие под углом друг к другу, имеет однозначное решение в следующих случаях, если известны:

  1. направления обеих составляющих сил;
  2. модуль и направление одной из составляющих сил;
  3. модули обеих составляющих сил.

Пусть, например, мы хотим разложить силу $F$ на две составляющие, лежащие в одной плоскости с F и направленные вдоль прямых а и b (рис.4). Для этого достаточно из конца вектора, изображающего F, провести две прямые, параллельные a и b. Отрезки $F_A$ и $F_B$ изобразят искомые силы.

Рисунок 4. Разложение вектора силы по направлениям

Другой вариант этой задачи - нахождение одной из проекций вектора силы по заданным векторам силы и второй проекции. (рис.5 а).

Рисунок 5. Нахождение проекции вектора силы по заданным векторам

Задача сводится к построению параллелограмма по диагонали и одной из сторон, известному из планиметрии. На рис.5б построен такой параллелограмм и указана искомая составляющая ${\overrightarrow{F}}_2$ силы ${\overrightarrow{F}}$.

Второй способ решения: прибавить к силе силу, равную - ${\overrightarrow{F}}_1$ (рис.5в).В результате получим искомую силу ${\overrightarrow{F}}_2$.

Три силы~${\overrightarrow{F}}_1=1\ Н;;\ {\overrightarrow{F}}_2=2\ Н;;\ {\overrightarrow{F}}_3=3\ Н$ приложены к одной точке, лежат в одной плоскости (рис.6 а) и составляют углы~ с~ горизонталью $\alpha =0{}^\circ ;;\beta =60{}^\circ ;;\gamma =30{}^\circ $соответственно. Найдите равнодействующую этих сил.

Проведём две взаимно перпендикулярные оси ОХ и OY так, чтобы ось ОХ совпадала с горизонталью, вдоль которой направлена сила ${\overrightarrow{F}}_1$. Спроецируем данные силы на оси координат (рис.6 б). Проекции $F_{2y}$ и $F_{2x}$ отрицательны. Сумма проекций сил на ось ОХ равна проекции на эту ось равнодействующей: $F_1+F_2{cos \beta \ }-F_3{cos \gamma \ }=F_x=\frac{4-3\sqrt{3}}{2}\approx -0.6\ H$. Аналогично, для проекций на ось OY: $-F_2{sin \beta \ }+F_3{sin \gamma =F_y=\ }\frac{3-2\sqrt{3}}{2}\approx -0.2\ H$. Модуль равнодействующей определяется по теореме Пифагора: $F=\sqrt{F^2_x+F^2_y}=\sqrt{0.36+0.04}\approx 0,64\ Н$. Направление равнодействующей определим с помощью угла между равнодействующей и осью (рис.6 в): $tg\varphi =\frac{F_y}{F_x}=\ \frac{3-2\sqrt{3}}{4-3\sqrt{3}}\approx 0.4$

Сила $F = 1kH$ приложена в точке В кронштейна и направлена вертикально вниз (рис.7а). Найдите составляющие этой силы по направлениям стержней кронштейна. Необходимые данные указаны на рисунке.

F = 1 кН = 1000Н

${\mathbf \beta }$ = $30^{\circ}$

${\overrightarrow{F}}_1,\ {\overrightarrow{F}}_2$ - ?

Пусть стержни прикреплены к стене в точках A и C. Разложение силы ${\overrightarrow{F}}$ на составляющие вдоль направлений АВ и ВС представлено на рис.7б. Откуда видно, что $\left|{\overrightarrow{F}}_1\right|=Ftg\beta \approx 577\ H;\ \ $

\[\left|{\overrightarrow{F}}_2\right|=F{cos \beta \ }\approx 1155\ H. \]

Ответ: $\left|{\overrightarrow{F}}_1\right|$=577 Н; $\left|{\overrightarrow{F}}_2\right|=1155\ Н$

Физика. 7 класс

Тема: Взаимодействие тел

Урок 21. Сложение сил

Юдина Н.А., учитель физики высшей категории ЦО №1409, финалист городского конкурса «Учитель года» (Москва, 2008)

27.10.2010 г.

Сложение сил - результирующая сила, равнодействующая сила

Добрый день.

Сегодня двадцать первый урок.

Раздел «Взаимодействие тел». И сегодня мы познакомимся со способом сложения сил, когда на тело действует не одна, а сразу несколько сил, равнодействующая сила или результирующая сила.

Давайте обратимся к примеру. К пружине мы подвесим два груза, масса каждого из которых 100 г. Итак, суммарная масса получившегося тела 200 г.

Это значит, что сила тяжести, которая действует на это получившееся тело, 2 Н. Давайте попробуем изобразить эту силу тяжести в масштабе графически.

Рисунок

Масштаб выбран 1Н – это единичный отрезок. Тогда сила тяжести, действующая на тело, =.

Теперь мы попробуем прикрепить еще один груз массой 100 г.

Как мы видим, пружина растянулась. Динамометр показывает нам общую силу 3Н.

Изобразим еще раз силу, действующую на первые два груза.

Затем добавим силу тяжести, действующую на дополнительный груз, .

Обратите внимание, что обе силы направлены вдоль одной прямой в одну сторону. Равнодействующая сила, найдём её, для этого необходимо сложить модули этих сил R=F1+F2.

Направление равнодействующей будет в ту же сторону, куда и были направлены обе силы.

А теперь обратимся к примеру, который позволит разобрать ситуацию, когда силы направлены в разные стороны.

Итак, две команды перетягивают канат. Суммарная сила одной команды составляет =500 Н. Суммарная сила второй команды составляет =700 Н.

Масштаб: 100 Н.

Я выбрала масштаб – единичный отрезок соответствует 100 Н.

И тогда на рисунке четко видно: 5 единичных отрезков – сила первой команды составляет 500 Н; 7 единичных отрезков – сила действия второй команды составляет 700 Н. На рисунке видно, что эти две силы направлены в разные стороны вдоль одной прямой. Для того чтобы найти равнодействующую этих двух сил, необходимо из большей по модулю силы вычесть меньшую по модулю силу R= F2- F1, и направление результирующей силы будет в сторону большей силы.

На чертеже мы можем указать название: – результирующая или равнодействующая сила.

В случае, когда на тело действует не одна, а несколько сил сразу, необходимо найти их равнодействующую.

Необходимо также помнить, что если на тело действует несколько сил, но, как в данном случае, эти силы равны по модулю и противоположны по направлению, сила тяжести, действующая на эти грузы к земле, вниз, и сила упругости, действующая вверх, – эти силы равны по модулю и противоположны по направлению.

В этом случае тело будет либо покоиться, либо оно может двигаться равномерно и прямолинейно.

Спасибо. До свидания.